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Dynamical behavior of a thermostated isotropic harmonic oscillator
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Characteristic recurrence phenomena that are strongly dependent on initial conditions but do not de-
pend much on the numbers of degrees of freedom are observed in the study of a system consisting of
identical harmonic oscillators coupled with the Nosé-Hoover thermostat. The time evolution of the en-
ergy of each oscillator in this system at large Q (Q is a parameter controlling the speed of the response of
the thermostat) is composed of a secular periodic motion with frequency of order 1/Q and fast fluctua-
tions around it with frequency of order 1. The latter is the natural frequency of oscillators. The secular
part depends very sensitively on initial conditions. The dynamical behaviors of the system are analyzed
by the perturbation treatment with respect to 1/Q, and a Hamiltonian

'={3,;3, pipjcos[2(g; —gq;)]} /16, which describes the behavior of the secular part in the original sys-
tem, is derived of first order in 1/Q. The coordinate g; and the conjugated momentum p, in the Hamil-
tonian H' are the slowly changing part of the phase ¢; of the oscillator and the energy H;. I found that
this Hamiltonian H’ is completely integrable and can be solved analytically. The solutions thus obtained
describe very well the dynamical behaviors in the original system.
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I. INTRODUCTION

The investigation of completely integrable systems has
been an attractive theme in classical mechanics. Only a
small number of such systems with two or more degrees
of freedom was known before 1967. But the discovery of
a new approach to solving nonlinear equations (the in-
verse scattering method [1]) opened a way for finding new
completely integrable systems: the Korteweg—de Vries
equation, the Toda lattice [2], etc. The development in
this field is compiled in a recent book by Perelomov [3].

I report in this article the finding of characteristic re-
currence phenomena in a system consisting of identical
harmonic oscillators coupled with the Nosé-Hoover ther-
mostat, that the behavior is very well described by a
Hamiltonian system that is derived by a perturbation
treatment of the Nosé-Hoover thermostat equations with
respect to 1/Q (Q is a parameter controlling the speed of
response of the thermostat), and that the Hamiltonian is
completely integrable and can be solved analytically.

The Nosé-Hoover thermostat [4-7] is one of the
constant-temperature molecular-dynamics simulation
techniques that can produce the canonical distribution in
a classical system. An extended system consisting of a
physical system and a degree of freedom corresponding
to a heat bath is considered in this formulation.

The rigorous proof that the canonical distribution is
really reproduced in the Nosé-Hoover thermostat method
is given [4-7]. However, the ergodic behavior in the ex-
tended system is always assumed in the proof. Therefore,
the canonical distribution is not guaranteed if a system is
not ergodic.

Several numerical investigations [8—11] confirm that
the ergodic property is attained in many-particle systems
if the parameter Q is selected within an appropriate inter-
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mediate range. Therefore, the assumption of the ergodic
property is justified in a many-particle system in most
cases. But in a system with a small number of degrees of
freedom, it is not generally guaranteed and should be
confirmed separately in each system. A simple coun-
terexample is a single harmonic-oscillator system.

The investigation of a single harmonic oscillator cou-
pled with the Nosé-Hoover thermostat shows the follow-
ing results [6,12—15]. At large Q, the behavior is regular.
The trajectory forms a torus around the unperturbed har-
monic oscillation. At small Q less than a critical value,
irregular behavior is observed, but there are also many
stable periodic orbits at the same Q value. Therefore, the
chaotic orbit does not cover the whole region of the
phase space. Thus, the single oscillator system coupled
with the Nosé-Hoover thermostat is not ergodic.

I extended the study further, to the system with two or
more degrees of freedom. One’s natural expectation is
that the chaotic behavior will be observed more easily in
many degrees of freedom than in a single oscillator. And
I obtained the expected results when the frequencies of
the oscillators were different. The critical Q value shifts
considerably to larger values in the case of many oscilla-
tors. :

However, when all the frequencies are identical (or in
an isotropic harmonic oscillator in a high-dimensional
space), the critical Q value remains of the same order as
in the case of a single oscillator, and the characteristic
regular periodic beat of the energy of each oscillator is
observed at Q larger than the critical value. The frequen-
cy of the beat is of order 1/Q, which is much slower than
a natural frequency in a Nosé-Hoover system of order
(1/Q)'2, and the frequency of the oscillators of order 1.

I was interested in this regular behavior and investigat-
ed the system more in detail. The frequency of the beat
depends drastically on the value of the Q parameter and
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the initial conditions. Especially, if we set all the
differences of phases very small initially, the frequency of
the beat becomes quite low. I get several empirical rela-
tions from numerical calculations. The following main
features do not depend much on the number of oscilla-
tors: (i) the sinusoidal beat of the energy, (ii) acceleration
of the angular velocity, and (iii) the phase shift of —7
near the region where the energy of the oscillator takes
the minimum value.

The theoretical investigation on this system is carried
out with a perturbation calculation with respect to
€=1/Q. A Hamiltonian system H' that describes the
slow movement of the oscillators with time r=¢t is de-
rived from the order-e term of the Nosé-Hoover thermos-
tat equation,

H’:TlsEzHiOHjOCOS[2(¢iO_¢jO)] . (1.1)
i

H,y and ¢, are the slowly changing component of the en-
ergy H and the phase ¢ of oscillator i, respectively. I
found that the Hamiltonian Eq. (1.1) is completely integr-
able. The behavior of the slowly changing part of H; and
¢; can be expressed explicitly. The result agrees very well
with simulation results.

The Nosé-Hoover thermostat is now routinely em-
ployed in molecular-dynamics simulations [16,17] and in
the study of the electronic properties [18] combined with
the Car-Parrinello technique [19]. The reliability of the
method has been questioned by several researchers who
do not pay attention to the condition in which the ergod-
ic assumption is justified. This article will give useful in-
formation about the nature of the Nosé-Hoover thermos-
tat. A harmonic-oscillator system is one of the typical
models of a physical system. Even though the system is
simple, the dynamical behaviors change very much de-
pending on the identity of the frequencies. In this article,
it will be confirmed that the regular behavior is observed
only if all the frequencies are equal. In a general interact-
ing oscillator system, all the normal-mode frequencies are
different. This guarantees the reliability of the Nosé-
Hoover thermostat in most interacting systems.

In Sec. II, we describe the Nosé-Hoover thermostat
and the system in which we are interested. Several prop-
erties obtained analytically are also given. The results of
the numerical calculations on the system are given in Sec.
I1I.

In Sec. IV, a perturbation calculation is carried out to
separate the slowly and rapidly changing parts, and the
Hamiltonian Eq. (1.1) will be derived. In Sec. V, the
properties of the Hamiltonian Eq. (1.1) are investigated,
and it is shown that the reduced Hamiltonian is com-
pletely integrable. Several discussions and remarks are
given in Sec. VI.

II. NOSE-HOOVER THERMOSTAT AND THE SYSTEM
IN WHICH WE ARE INTERESTED

The Nosé-Hoover thermostat [4—7] is a method uti-
lized to realize molecular-dynamics simulations at
constant-temperature conditions. We consider a classical
particle system described by a Hamiltonian H(p,q)

p?
]
H(p,q)= 3 I

i i

+®(q), (2.1)

where m;, p;, q; are the mass, the momentum, and the
coordinate of the particle i. & is the potential energy of
the system. The equations of motion in the Nosé-Hoover
thermostat formulation are

%:%{:%, (2.2)
%= g:f ;,__%—gp,., 2.3)
%§=(2 s /o

2___ng /Q , (2.4)
dTlr;ls':;' (2.5)

More general extensions of this formulation are discussed
by Bulgac and Kusnezov [8,20]. In Eq. (2.3), an addition-
al term similar to a friction force, —&p;, is added to the
ordinary canonical equation. The friction coefficient ¢ is
not a parameter, but a variable whose time evolution is
governed by Eq. (2.4). g is the number of degrees of free-
dom of a physical system, k is the Boltzmann constant,
and T is the temperature. Q is a parameter correspond-
ing to the mass of a heat bath, and controls the speed of
response of the heat reservoir.
A quantity H*

2
Pi
H*=2 2m;

i i

+P(q)+ §2+ng1ns (2.6)

is a conserved quantity in a dynamical system described
by Egs. (2.2)-(2.5), and we can consider that the whole
system in the Nosé-Hoover thermostat method consists
of a physical system H(p,q) and a degree of freedom (s
and §) corresponding to a heat bath. We shall call this an
extended system. H* in the extended system is conserved
but it is not a Hamiltonian of the system. Equations
(2.2)-(2.5) cannot be derived from H* directly. The cou-
pling between the system and the thermostat is expressed
via the pseudofriction term. The Hamiltonian Eq. (2.1) is
no longer an integral of motion. Equations of motion
(2.2)-(2.4) form a closed set of equations in a phase space
I'=(p,q,{). The phase-space volume in I" along a trajec-
tory is not conserved, but it changes proportionally to the
inverse of the Boltzmann factor. This non-Hamiltonian
nature of the method is the reason why the canonical dis-
tribution is realized by the Nosé-Hoover thermostat
[7,20]. The ergodic behavior in the extended system is as-
sumed in the proof given in Refs. [4—7]. Therefore the
canonical distribution is not guaranteed if a system is not
ergodic.

The ergodic property in many-particle systems is
confirmed from several numerical investigations [8—11].
But we should be careful in the study in a system with a
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small number of degrees of freedom.
The typical frequency of variable § is analyzed as

o, =(2gkT /Q)'"? 2.7)
at small Q, and
0,=[(2gkT /Q)(gk /2C})]'/? (2.8)

at large Q, where Cj is the heat capacity. Both formulas
(2.7) and (2.8) show (1/Q)!/? dependence of the natural
frequency on Q.

Slow peculiar beat behaviors with frequency of order
1/Q are observed in the study in an isotropic harmonic-
oscillator system. The beat is much slower than the natu-
ral frequency of order (1/Q)!/? and the frequency of the
oscillators (of order 1). We study the nature of this be-
havior in this article.

The system in which we are interested is a system con-

sisting of identical harmonic oscillators (or a g-
dimensional isotropic oscillator),
H(p,q)=13 (p/+q}), 2.9

1

where we employ reduced units for the coordinate, the
time, and the energy, so that m =1.0, ®=1.0, and the
average value of the energy of an oscillator kT =1.0.

The Nosé-Hoover thermostat equations of motion in
these reduced units are

dq;

— =p. 2.10

dar Pio ( )

dp;

L - 2.11

it q; —&p; (2.11)
(2.12)

%tg= [;piz—g]/Q :

g is the number of the oscillator, and Q is a parameter
controlling the speed of response of §.

This system possesses a hidden symmetry. Equations
(2.10)-(2.12) do not change by any orthogonal transfor-
mation S identical in q and in p spaces:

/= 28,4, »
j

pi=2 Siip; -
J

(2.13)
(2.14)

The time evolutions starting from initial configurations
related by Egs. (2.13) and (2.14) are not independent, but
they always satisfy the relations (2.13) and (2.14).

An action-J; —angle-¢; variables formulation is more
convenient in this problem. The action J;=H,/w; is
identical with the energy H; in the isotropic case with
®;=1.0. H; and ¢; are related to p; and g; by a canonical
transformation,

p; =1/ 2H,coss; , (2.15)

qi:’\/-ﬁ;Sin(bi . (2-16)

The equations for H;,¢;
(2.10)-(2.12) as

are obtained from Egs.

dH,;
= co<2h.

ar 2{H;cos%¢p; , (2.17)
d¢;
d—f=l+§sin¢,~cos¢,~ , (2.18)
d
ﬂtg: 2(2H,-cosz¢,-)—g]/Q . (2.19)

The shift of 7 in ¢; does not change the equations. The

phase ¢ can be reduced to [0, 7] by operation of modulus
.

Consider the difference of two angles ¢; and ¢ ;- Sub-
tracting Eq. (2.18) for a phase ¢; from that for ¢;, an
equation describing the difference of two phases
A¢;;=¢;— ¢, is obtained,

d .
E(qﬁi—¢j)=§(s1n¢icos¢i—sin¢jc0s¢j)
= -g(sin2¢i —sin2¢;)
=gcos(¢; +¢; )sin(¢; —¢;) . (2.20)
If A¢g;;=0 (mod =) at a certain time, Ag;; is always O

(mod ) thereafter. This shows that the phases ¢; are or-
dered, and a phase ¢, never gets ahead of another ¢;,

$1=¢,=¢3= - 5¢g S¢t+m.

The order of phases is determined by initial conditions.
If two or more phases are identical (¢; =¢; for i and j),

(2.21)

(2.22)

Therefore, the ratio of the energies is a constant
(H;=CH,). This means that a set of oscillators with the
same phase is equivalent to a single oscillator. Especially,
if all the phases of oscillators are equal, it behaves as only
one oscillator. The number of degrees of freedom is
effectively reduced if a phase catches up with another
one. However, the overtaking of phases was never ob-
served in numerical calculations. Perhaps it is forbidden
in this system.

The thermostat works to keep the total energy around
the equipartition value gkT (g in reduced unit). If we set
the initial values as H?=1.0, ¢’=im/g+d,
(i=1,2,...,g),and §0=0, the thermostat does not work
and all the oscillators behave like a free oscillator,
H;=1.0, ¢,=t+¢? £=0.

III. NUMERICAL CALCULATIONS

The equations of motion of identical harmonic oscilla-
tors in energy-angle variables [Egs. (2.17)-(2.19)] are in-
tegrated with the fourth-order Runge-Kutta algorithm.
In our calculations, the initial conditions for H; and § are
always chosen as H; =1 and {=0, and the dependence of
dynamical behaviors on the distribution of the initial
phases ¢?, (i=1,2,...,g) and on Q are studied. The
condition H; =1 may seem to be too strong a restriction,
but it is not. We confirmed in preliminary calculations
that the dynamical behaviors are always similar if the to-
tal energy H is set to the equipartition value g,



H=3 H =g . (3.1)

We will call the condition expressed in Eq. (3.1) the
equipartition condition. The total energy of a physical
system in Eq. (2.6) already reaches an equilibrium value
at the initial stage. Therefore, the energy transfer be-
tween the physical system and the thermostat does not
occur effectively. The kinetic-energy term of the ther-
mostat is initially set to zero, and it also remains in a
small value after that. The thermostat part is considered
as a perturbation term of the oscillator system with the
equipartition condition. If the total energy H is not equal
to g initially, a relaxation process occurs and excess or
insufficient energy is taken away or supplied by the ther-
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mostat. In both cases, the kinetic-energy term of the
thermostat gains considerable energy in this relaxation
process, and the term cannot be considered as a perturba-
tion. It is expected that the dynamical behavior becomes
more complicated in this situation.

Two typical examples of dynamical behaviors are given
in Figs. 1 and 2. The number of oscillators g is 2, Q is
4.0, the integration time step At is 0.025, and the initial
phases are ¢,=0.0, ¢,=5°=w/36 in Fig. 1. g=35,
Q=4.2, At=0.025, and ¢,=0.01(i —1) (i=1,2,...5) in
Fig. 2. The time evolutions of (a) the energy of each os-
cillator, (b) the phase A¢;, =¢; —w;t, (c) the differences of
phases ¢; —¢,, and (d) { are depicted in both figures, from
the top down.

The change of the energy [(a) in Figs. 1 and 2] consists
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of two components: a slow oscillation with large ampli-
tude, similar to the beat, and a rapid fluctuation with
small amplitude. The slow part of the time evolution is
periodic, and it almost returns to the initial condition at
about =540 (for g=2) and t=580 (for g=5). This
change is very well expressed by a sinusoidal function.
The energy of each oscillator takes a very small minimum
value, almost zero, during the oscillation.

The time evolution of the phase is also characteristic.
In part (b) of Figs. 1 and 2, the deviation of the phase
from the unperturbed motion A¢; =¢; —w;t is depicted.
A¢; increases linearly in most of one period. This means
that the oscillation is accelerated by coupling with a ther-
mostat. A¢; decreases in a small region near the
minimum of the energy H;. The absolute value of the

SHUICHI NOSE 47

slope in this decreasing region is almost equal to that of
the linearly increasing part. The total delay of the phase
caused by the decreasing region is — .

It is clear in Figs. 1 and 2 that the equipartition condi-
tion Eq. (3.1) is fairly well satisfied. The main features of
the time evolution are common in two and five oscilla-
tors. The difference of phases stays near 0 or 7 in most
times, and it changes rapidly in a narrow transition
period. The heat-bath variable { changes very rapidly
and no secular change is detected.

Detailed investigations of the dependence on Q and on
the initial configuration are carried out with two oscilla-
tors. The dependence on the initial difference of angles is
given in Fig. 3. A¢=¢3—¢7is 1°, 2°, 5°, 10°, 30°, 45°, 60°
and 75° from the top. The simulation condition is

407

307

207 4

Agy = éi- wit

107 4

(=}

FIG. 2. Time evolution in a five-oscillator
system. The quantities are the same as in Fig.

1. The initial angles are selected as
$9=0.01(i —1).
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FIG. 3. Dependence on the initial condition at g=2, Q=4, and At=0.05. The column on the left is the energy H;, and the
difference of the two angles A¢,, is on the right. The initial differences between angles are 1°, 2°, 5°, 10°, 30°, 45°, 60°, and 75°, from the
top down.
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0=4.0, At=0.05, H’=1.0, £°=0.0. The left-hand side
in Fig. 3 is the time evolution of the energy of the oscilla-
tor, and the right-hand side is the difference of angles
A, =¢,—¢,. The beat frequency increases with A¢. At
large A¢, the separation of the rapidly and slowly chang-
ing components is not so clear in energy, but in the
difference between two phases the slow component is
easily recognized even in such conditions. A¢ depen-
dence of the beat frequency is very well expressed by

Q~ A'sinA¢ (3.2)

(see Fig. 4). The value of the constant A’ determined
from the data in Fig. 3 (Q=4.0, g=2) is 0.136. The
minimum of the energy differs clearly from O in the re-
gion A¢ = 30°. The range of the energy beat is limited to

1—cosA¢p<H;<1+cosA¢ . (3.3)
The change of A¢,; =¢,— ¢, is limited in the range
APp=A¢, =T— AP . (3.4)

The Q dependence with A¢=15° is given in Fig. 5. The
results at Q =1, 2, 4, and 8 are depicted. At large Q, the
behavior is regular. The frequency decreases in propor-
tion to e=1/Q at large Q (Fig. 6). However, at Q =1, the
time evolution exhibits some kind of irregularity.

Empirical relations deduced from the numerical calcu-
lations are expressed as

015
Q /
010 /
0.05+¢
O 2 [ 1 1 2
0 6 3 %)

AP

FIG. 4. Relation between the frequency of the beat Q and the
initial difference A¢. Circles indicate data points shown in Fig.
3. The solid curve is a sine function A4'sinA¢, with the best-
fitted parameter 4'=0.136.

where A¢ is the initial difference of phases, and 4 and B,
are constants. The amplitude of the beat is proportional
to cosA¢ and is independent of Q, and the frequency of
the beat is proportional to sinA¢ and 1/Q. The slope of
A¢; is proportional to 1/Q, but is almost independent of
A¢. The amplitude of the ¢ fluctuation is smaller than
1/V'Q, which is expected in the equipartition law.
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FIG. 5. Dependence on the parameter Q. The columns show the results of the energy, the angles, and the difference of angles,
from the left. The parameter Qs 1, 2, 4, and 8, from the top down (A¢=5°, At=0.05).
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0.08}
o
Q
004}
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00— %5 _ 10

17Q
FIG. 6. Q dependence of the beat frequency Q. The solid
line expresses the theoretical relation Q=(sinA¢)/2Q at large

0.

Therefore, the thermodynamical equilibrium in the ex-
tended system is not attained at large Q in these calcula-
tions.

The typical beat with large amplitude appears with
small A¢. When A¢ is near 7 /2, the fluctuation of the
energy is very small. This is the behavior mentioned al-
ready in the final part of Sec. II.

We found that the dynamical evolution is periodic in
the isotropic harmonic oscillator. This suggests the ex-
istence of integrals of motion. We also studied the aniso-
tropic oscillator. The dynamical behavior is very
different from that in the isotropic case. No systematic
dependence on A¢ is detected in the anisotropic case, be-

(a) At=0.00625

cause the passing of the phases must occur. Also the reg-
ularity of the time evolution is lost at larger Q values. In
Fig. 7, two time evolutions of the energy H, with »,;=1.0
and w,=V'3 at Q=4, started from the same initial
configuration, are shown. The only difference is the
length of the integration time step A¢#: (a) 0.006 25 and (b)
0.001 562 5. The time evolution depends significantly on
the integration time length Ar at the same Q (Q =4) as in
Figs. 1 and 2. During a short period, they behave simi-
larly, but a small difference caused by the different accu-
racy in the integration grows very rapidly, and after
about ¢t =200, the two time evolutions are quite different.
This detailed dependence on initial or simulation condi-
tions is an indication of chaotic behavior. The sensitive
dependence on the length of the integration time step has
never occurred in the isotropic case.

IV. SEPARATION OF RAPIDLY
AND SLOWLY CHANGING COMPONENTS

The numerical calculations given in Sec. III suggest the
regular behavior of the thermostated isotropic oscillator
at large Q. We study the dynamical behaviors in a sys-
tem described by Egs. (2.17)-(2.19) by a perturbation
analysis with respect to e=1/Q. This perturbation pa-
rameter is suggested from the Q dependence of the fre-
quency, Eq. (3.5). When the equipartition condition, Eq.
(3.1), is satisfied, the energy of the thermostat part in Eq.
(2.6) is very small. We could consider this term as a per-

I
|

|

=

2000 4000r

(b) At=0.0015625

FIG. 7. Time evolution with irrational fre-
quency ratio, w;=1, w,=V'3. The two time
evolutions of the energy of the second oscilla-
tor H, are depicted with (a) Ar=0.00625 and

(b) At=0.0015625. The two evolutions devi-
ate considerably after ¢ =200.
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turbation that may cause the coupling between harmonic
oscillators. § is proportional to 1/Q in Eq. (2.19). If we
scale § as

=€k, 4.1)
the kinetic-energy term of the thermostat Q&2/2 is e£3/2

and becomes of order €.
We rewrite Egs. (2.17)-(2.19) explicitly with € as

dH,;
e —2¢€§,H;cos*¢; , (4.2)
dé;
——=1+¢€¢,sing;cos¢; , (4.3)
dt
dg] _ 2
€e——=€| ¥ (2H;cos’¢;)—g | . (4.4)
J

dt

The solution of zeroth order is clearly the unperturbed
motion of the oscillator:

H,=H,, 4.5)
é;=t+d;, (4.6)

where H,, and ¢, are constants.

In the perturbation of the first order with €, we must
take into consideration the slow change of the constants
H,, and ¢,,, because their time derivatives become the
same order as those of H;; and ¢;,. The time variable ap-

propriate for these variables is
T=€t . (4.7)

Therefore, proper expansions of the variables to order €
are

¢, =t+dolet)tep, (t)+ -+, (4.9)
E=efy(t)+ -+ . (4.10)
The equations of first order with € are obtained as
o | M _ e HygeosH (1 +610) | (4.11)
dr dt
d—:;—o+%=§1sin(1+¢m)cos(r+¢,~0) , (4.12)
dg,

ek §2Hjocos2(t+¢jo)—g
= [EHjo—g]+ S Hjcos[2(1+,0)] . (4.13)
J J

We assume that the equipartition condition, Eq. (3.1), is
always satisfied. As already mentioned in Sec. III, the
conservation of the total energy of the oscillator system is
a plausible assumption. Then the first term of Eq. (4.13)
vanishes and Eq. (4.13) becomes

g

—2L =3 Hycos[2(t+6,0)] -
J

ar (4.14)

The only rapidly changing part in the right-hand side of
Eq. (4.14) is the time ¢ in the cosine function. Therefore,
this equation can be integrated in zeroth order as

Hj,
§1=Z —2——sm[2(t+¢j0)] . (4.15)
j
A possible additional constant to Eq. (4.15) is O, because
the average of §; should vanish. &, in Eq. (4.11) is re-

H;,=H(et)+eH;(t)+ -, (4.8) placed by Eq. (4.15),
J
dH,, dH;, H; 1+cos[2(t+¢,0)]
dT —‘Tt—_:_zHio ?31—"5111[2(t+¢10)] 2

=—3H;o 3 Hjesin[2(t +¢0)]—3H;o 3, Hosin[2(2 +¢ o) Jcos[2(z + ;)]
J J

= _%H"OZ Hosin[2(2 +¢;0) | —+H;o 3, Hjo{sin(4t +2¢,0+26 o) +sin[2(d;0— ;o) ]} - (4.16)
J J
[
We can separate the slowly and rapidly changing com- H;(t)=3H;, ¥ Hjcos(2t +2¢ )
ponents of the equation. The slowly changing part is j
dH +& ioijOCOS(4t+2¢j0+2¢i0) . (4.19)
d =_7‘T iOZHjOSin[2(¢j0*¢i0)] Py (4.17) J
T Jj The equation for ¢; is obtained in the same way as for H;,
and the rapidly changing part is déi  déj . .
ar —Ej—z%sm(Zt +2¢,-0)2 +H josin(2t +24 )
dH;, . !
ar —3Hy ? Hosin(2t +2¢ o) =—1 2 Hjo{cos(4t +2¢,0+260)
J
(4.18) —cos[2(¢;—j0) 1} -

—3iH > Hjgsin(4t +2¢,0+26;) .
J

Equation (4.18) can be integrated in zeroth order as

(4.20)
The slowly changing part of ¢; is
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doio _
7——§2Hjocos[2(¢,-0—¢jo)] , 4.21)
and the rapidlyj changing part is
—dj—t” =—4 2 Hjocos(4t +2,0+2¢,) . (4.22)
¢;, is obtained injzeroth order as
(4.23)

¢i()=—5 3 Hjosin(4t +2¢,,+24 ) .
j

We derived the equations of motion governing the
slowly changing part, Eqgs. (4.17) and (4.21). If we rein-
terpret H;; as a momentum p;, and ¢,, as a coordinate gq;,
and T=et as the time, the equations become a canonical
form,

dg;

dr % ?pjcos[Z(qi—qj)] , (4.24)
dp; 1 .
FE ?pjsm[%q,-—q,-)] ) (4.25)
and they can be derived from a Hamiltonian H',
H'=13 3 ppjcos[2(qg; —q;)] . (4.26)
i

V. THE INTEGRATION OF THE REDUCED
EQUATIONS OF MOTION

We will show in this section that the Hamiltonian Eq.
(4.26), describing the slow change of the thermostated os-
cillators, is completely integrable. A key property is that
the Hamiltonian can be factorized as

H'=% 3 3 pipjcos[2(qg;—q;)]
i

2ig; —2iq;
=1 EPiel 'Epje ]]
i J
=LXX*, (5.1
J
X _ d g | _ 5 20 | 9P d9;
dr dr | 2P° ] ey A,

8

i

i x=L
=4 [;p, ]X L Px

Because P is an integral of the motion, the time evolution
of the factor X can be obtained as

X:Ce(i/4)PT X (5.9)

The constant C is determined to satisfy Eq. (5.1),

— 3 ‘_Lpi(eziin*_e_Ziin)+2ip,-%(e2iq"X*+e

where the factor X is defined as

X= EP,-eziq” .
i

(5.2)

X* is the complex conjugate of X. Equations (4.24) and
(4.25) are expressed in a simple form with X and X *

dg;

—r=k(e Xt e X)), (5.3)

.

dp; i i “2ig

%=—ép,-(e2u]')(*—e Mixy (5.4)
.

The interactions with other oscillators occur only via
common factors X and X *.
The total momentum P

pP= Zpi (5.5)

(or the total energy in the original system) is a constant of
motion. It can be shown easily as

dP dp; _ : —
E___ ; -E—T—_ngpipjsm[Z(q,-—qj)]—O . (5.6

The last equality holds because the sine function is an
odd function of g;—g;. The conservation of P is con-
sistent with the equipartition condition, Eq. (3.1), as-
sumed in the process of derivation of the reduced Hamil-
tonian, Eq. (5.1). We define a quantity H"
H”=l—62H’ , (5.7)
P
so that the solution of p; and g; can be expressed in a sim-
ple form.
By differentiating X with respect to the time 7, we ob-
tain a simple closed relation,

Ty

(5.8)

C=4(H")' %%, (5.10)
where a is a constant. Now that the factors X and X *
are obtained as functions of the time 7, the equations of
motion, Egs. (5.3) and (5.4), can be separated in each de-
gree of freedom and can be integrated independently.

At first, we consider the equation for g;,
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dg; iq. —2iq. We define a new variable y; as
i:%(ez'qu*_*_e Zq:X) !
T
=q,——T—a . (5.12)
__(H')l/z(ei[Zqi—(P/4)‘r——2a] vi=q 8
4 The equation for y; becomes
—i[2g;—(P/4)7—2a]
e ) ¥ _da _P_ (H)” cos2y, — & (5.13)
(H')I/Z P dT dT 8 2 ! 8 ’ ’
= e 5.11
2 cos 24; 4 T2 ( ) This equation can be integrated as
J
172
8 = | | L H)I2 ,
—;(I—H )" 12tan"! Il—_——zy%l/? tany; | =7+p; . (5.14)
Thus
1/2
— 1N1/2 ﬁ
¥;=—tan"! 1—4_—%%";—175 ] tan '}Si(l—H”)l/zT'f'T (5.15)

An appropriate branch of the tan~! function should be chosen so that ; is a continuous function of the time 7. There-

fore, the slow component of the angle ¢,,=g; is obtained as

P —1 1_(H”)1/2 i P 1/2 Bi
¢,-O(T)—q,~—§r+a——tan m tan | —(1—H") T+7 . (5.16)
[
Equation (5.16) consists of a linearly increasing term and doio P
a periodically decreasing term. The frequency 2 in the —d7" r=fo=§_{1_[1+(H' )1/2]} =—5(H )2 (5.20)

periodic term is

a=20-H"" (5.17)
in reduced units. In the original problem, the frequency
in the g oscillator system (1, is expressed as
172
0 -2 16 ] ’

=g |

4

where P =g by Eq. (3.1).
¢;o increases linearly with slope P /8 in most of one
period. ¢;, decreases near the point 7=7,, where

Qry+p;=m+2nm .

(5.18)

(5.19)

|

The slope of ¢, at 7, is negative

|

dInp;
dr

=(H')"%sin2¢; = — —:i(H")l/Zsin 12 tan™!

— _(HII)I/ZQ

1____(Hu)1/2
1+(H")7
sin(Q7+j;)

When the initial ¢; are selected from a narrow region, H'
is nearly g2/16, and Eq. (5.20) gives — P /8, whose abso-
lute value is almost equal to the slope in the linearly in-
creasing region.

Next, we consider the equation for p;,

d i 1 iq. —2ig.
7;E’T_:_épi(ez"")(*—e Mix)
=p,(H")"?sin 2q,»-—§7-—2a

=p;(H")sin2¢; . (5.21)
We have already obtained the expression for ;. The
equation can be transformed to an integrable form,

|

172
tan[(Q7+8;)/2]

1+ (H" ) 2cos(Qr+p;)

=4 n[1+(H")cos(Qr+B;)] .

dr

(5.22)

Thus, p; or H;,, the slow component of the energy change, is also obtained in a closed form,

Hyo(r)=p;=C,[1+(H")"*cos(Qr+p;)]=C;

1+%(H’)l/zcos

172

Lid T+B;

4

_16

PZH’

1

—

] . (529
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The change of H;,(7) is described by a sinusoidal function
and the functional form does not depend on the number
of oscillators. This agrees well with the numerical calcu-
lations given in Figs. 1 and 2.

Equations (5.16) and (5.23) are the complete solution of
the reduced Hamiltonian Eq. (5.1) that describes the
slowly changing part of the thermostated oscillators. The
constants a, f3;, and C; are determined in the following
steps. Only a, out of these constants, appears in the ex-
pression of the factor X,

X= zpieZiqi=4(Hr)1/2ei[(P/4)’r+2a] . (5.24)
Thus « is determined from the relation
3 plsin2g?
tan2q= ———— (5.25)
> plcos2q?
i

p? and g are the initial values of p;and ¢;. a and B; ap-
pear in Eq. (5.16). At =0, it becomes

the Hamiltonian H’, the total momentum P, and J;
(i=1,2,...,8), which is equivalent to the coefficient C;,
Eq. (5.28):

J
=p; 2pj{1—cos[2(qi_Qj)]}
J

=2p; Epjsinz(q,- —q;) . (5.29)
J

The number of integrals is g +2, but they are not in-
dependent. The Hamiltonian H' can be expressed by P

and J; as
H=— (P~ 3J;]. (5.30)

16 -

Also, all J; is not independent. With g=2, clearly

J,=J,, and the independent conserved quantities are
P=p,+p, and J =2p,p,sin’*(g, —q,).

1/2
_ 1172
g°=a—tan"! i+§5“;m tan(B, /2) (5.26) VI. DISCUSSION
We have shown that the dynamical behavior of the
Thus the constant B; is determined as thermostated isotropic harmonic oscillator is completely
wi1s2 1172 regular and the system is integrable at large Q limit. The
B,=2tan"" IHHD N a— %) (5.27)  solution H,, [Eq. (5.23)] and ¢;, [Eq. (5.16)] explains the
1—(H")'? ' characteristic behaviors obtained in numerical simula-
. . . tions.
Finally, the C; is determined from Eq. (5.23), At first we consider solutions for g =2, where detailed
pP investigations are carried out in Sec. III. Parameters C;
= 7 and B; should satisfy
1+(H") “cosp;
9 Cc,=C,=1.0, (6.1)
{ (12 _,0
=g {(1—(H") *cos[2(a—g;)]} - (5.28) By=B,+ , (6.2)
Conserved quantities of the reduced Hamiltonian are in this case. The general solutions for g =2 are
J
Ho(1)=1+(H")?cos(Qr+8,) , (6.3)
Hy(r)=1—(H")"%cos(Qr+8,) , (6.4)
172
b =tr+a—tan—! | | TZEHD N Qr+B)/2] (6.5)
* 1+ (H")1? ! ’
172
| | 1=EH)2
— 1 6.6
bl =dr+attan~t| | T 0T /tan[(m+ﬁ,>/z] : (6.6)
[
where the total energy of the oscillator system H"' is a=ltan~! H ?sin2¢?+H ‘z’sin2¢(2’ 6.9)
) 2 HYcos2¢+ Hcos2¢9 |’ ’
H"=4H'=1—H%Hsin*(¢9—¢?) , 6.7)
1 | H 1 —H3
the frequency is By=cos 2H) (6.10)
: — 0 — - 0—
=1(1—H")"2=1(HOH?)" *sin|$?— $3| . (6.8)  For special cases H)=H9=1.0, and ¢9=A¢, ¢}=0 de-

and the remaining parameters a and 3, are determined as

picted in Figs. 1, 3, and 5, the parameters in Egs.

(6.7)-(6.10) are further simplified as
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H"=1—sin’A¢=cos’A¢, a=Ad /2, B;=m/2. Thus the
frequency for g =2 obtained in Fig. 3 should satisfy the
relation

Q,=

(1—cos?A¢) 1/2=3~Q~smA¢ (6.11)

2Q
This is the same form as that deduced from the numerical
calculations [Eq. (3.5)]. The coefficient A appearing in
the expression of beat frequency in Eq. (3.5) is 0.545, with
g =2 and at Q =4.0. This value is close to the theoretical
value 0.5 [see Eq. (6.11)]. Better agreement is expected at
larger Q. The frequency Q deviates to a larger value at
small Q from Eq. (5.18) (see Fig. 6). The effects of
higher-order terms should be included to explain this Q
dependence.
The difference of angles is a periodic function

sinA¢ ;

d10)=cot(A¢)cos 20 (6.12)

COt(¢20_

This function describes very well the behavior given in
Figs. 1, 3, and 5.

The frequency Q [Eq. (5.17)] and the amplitude H,,
[Eq. (5.23)] of the beat depend drastically on the value of
the reduced Hamiltonian, Eq. (5.1). When H"'=16H' /g*
is close to 1, a slow beat with large amplitude is expected.
This condition is fulfilled when all the differences of an-
gles are very small. If the angles distribute randomly in a
many-oscillator system, the value of H'' is about 1/g,
which is considerably smaller than 1, and the beat is not
so apparent in this case.

We will study a typical beat behavior. Solutions for
the initial configurations H?=1.0 and 4% =(k —1)A¢,
where the angles are distributed with equal distances, are
obtained as follows at small A¢ limit:

" lg—l
H'=1———"3 (g—k)k¥Ag)
& k=1
=1—1(g2—1)(A¢)?, (6.13)
ey —1)2
c, =1+312k = D (6.14)
g —1
2 |"?[g+1
B=2tan"'| | 1 g2 —k (6.15)
g

C, and 3, do not depend on A¢ at the small A¢ limit.

Especially for the case given in Fig. 2 (g=5),
C,=Cs=3, C,=C,=1, C;=1, B1=—Bs
=2tan~ V2=0,=109.47°, B,=—fF,=2tan (1/V2)
=m7—06,=70.53°, and B;=0, where 0, is the tetrahedral
angle.

We do not notice any reference describing the Hamil-
tonian, Eq. (5.1). But it belongs to a type of Hamiltonian
(21]

H=13% ¥ a;lqgpp; , (6.16)
[

which describes the geodesic flow in a curved space. The

metric tensor g;; in this space is the inverse matrix to a;;.

Especially, a Hamiltonian [22]

(6.17)

= 3439

has a close relation with Eq. (5.1).
transformation, Eq. (6.18)

. o *’.q,‘
Piz_l\/Pie s
=Vpie' ",
changes Eq. (5.1) into

n=oi[37) (39

A complex canonical

(6.18)

(6.19)

The reduced Hamiltonian is factorized as in Eq. (5.1)
or Eq. (6.19). The separation of the phase space into sub-
spaces consisting of each degree of freedom is realized by
this factorization. The factors X and X* express a com-
mon global coupling between oscillators. In a system of
this type, the mean-field approximation holds exactly,
and this is the major reason that we can solve Egs. (4.17)
and (4.21).

Equation (5.11) and the solution [Eq. (5.16)] are the
same as those obtained from the coupled rotator model
[23] at a global coupling limit. The change of the phase
of rotator i in this model is determined by

aé; _

6.20
ar ( )

[ ;; is a function of the difference between two phases ¢;

and ¢;. At a global coupling limit, it becomes

[j(x)=K sinx , (6.21)
for all (i, j) pairs. Then the equation in this case is
d¢;
2 =w;+K 2 sin(¢; —¢;) (6.22)

The mean-field approximation is exact in Eq. (6.22), and
the equations for each ¢; can be separated. This has the
same functional form as Eq. (5.11). One must remark
that the coupled rotator model is a phenomenological
model and that it is not a Hamiltonian system. On the
other hand, our Egs. (4.17) and (4.21), derived by a per-
turbation treatment, are a Hamiltonian system.

VII. CONCLUSIONS

A harmonic oscillator system coupled with the Nosé-
Hoover thermostat exhibits regular periodic beat behav-
iors at large Q (Q is the parameter controlling the speed
of the response of the thermostat). The equations of
motion describing the slowly changing part of the ther-
mostated oscillators are obtained from a perturbation
analysis with respect to 1/Q. The equations can be asso-
ciated with a Hamiltonian, and the system is completely
integrable, irrespective of the number of the oscillators.
The change of the energy is expressed by a sinusoidal
function. The frequency of the beat becomes quite low
when all the differences of the phases are very small.
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